Package 'adw'

Title: Angular Distance Weighting Interpolation
Description: The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius. In addition to this, a simple method which gridding the irregularly-spaced data points onto regular latitude-longitude grids by averaging all points in grid-boxes was also provided.
Authors: Panfeng Zhang [aut, cre] , Guoyu Ren [ctb], Yun Qin [ctb], Chenchen Ren [ctb], Xiang Zheng [ctb]
Maintainer: Panfeng Zhang <[email protected]>
License: GPL-3
Version: 0.4.0
Built: 2025-01-26 05:41:48 UTC
Source: https://github.com/panfengzhang/adw

Help Index


Angular Distance Weighting Interpolation.

Description

The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.

Usage

adw(ds, extent, gridsize = 5, cdd = 1000, m = 4, nmin = 3, nmax = 10)

Arguments

ds

a input dataframe which contains the column names of lon, lat, value.

extent

a extent numeric vector (latitude and longitude) of length 4 in the order c(xmin, xmax, ymin, ymax), or a polygon object with class 'sf' (package 'sf'), or a polygon object with class 'SpatVector' (package 'terra'). Assume that the coordinate reference system is WGS1984 (EPSG: 4326).

gridsize

the grid size, i.e. the grid resolution. units: degree.

cdd

correlation decay distance, i.e. the maximum search radius. unit: kilometer. default value: 1000km.

m

is used to adjust the weighting function further, higher values of m increase the rate at which the weight decays with distance. default value 4.

nmin

the minimum number of observation points required to interpolate a grid within the search radius (i.e. cdd); if the number of stations within the search ridius (cdd) is less than nmin, a missing value will be generated to fill this grid. default value 3.

nmax

The number of nearest points within the search radius to use for interpolation. default value 10.

Value

a regular latitude-longitude dataframe grid (interpoled values).

References

Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)

# example 1
grd <- adw(dd, extent = c(110, 117, 31, 37), gridsize = 0.5, cdd = 500)
head(grd)

# example 2
hmap <- cnmap::getMap(code = "410000") |> sf::st_make_valid() # return a 'sf' object.
grd <- adw(dd, extent = hmap, gridsize = 0.5, cdd = 500)
head(grd)

# example 3
hmap <- cnmap::getMap(code = "410000", returnClass = "sv") # return a 'SpatVector' object.
grd <- adw(dd, extent = hmap, gridsize = 0.5, cdd = 500)
head(grd)

Angular Distance Weighting Interpolation for the extent of 'simple feature'.

Description

The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.

Usage

adw_sf(ds, extent, gridsize = 5, cdd = 1000, m = 4, nmin = 3, nmax = 10)

Arguments

ds

a input dataframe which contains the column names of lon, lat, value.

extent

a polygon object with class 'sf' (package 'sf'). Assume that the coordinate reference system is WGS1984 (EPSG: 4326).

gridsize

the grid size, i.e. the grid resolution. units: degree.

cdd

correlation decay distance, i.e. the maximum search radius. unit: kilometer. default value: 1000km.

m

is used to adjust the weighting function further, higher values of m increase the rate at which the weight decays with distance. default value 4.

nmin

the minimum number of observation points required to interpolate a grid within the search radius (i.e. cdd); if the number of stations within the search ridius (cdd) is less than nmin, a missing value will be generated to fill this grid. default value 3.

nmax

The number of nearest points within the search radius to use for interpolation. default value 10.

Value

a regular latitude-longitude dataframe grid (interpoled values).

References

Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)
hmap <- cnmap::getMap(code = "410000") |> sf::st_make_valid() # return a 'sf' object.
grd <- adw_sf(dd, extent = hmap, gridsize = 0.5, cdd = 500)
head(grd)

Angular Distance Weighting Interpolation for the extent of 'SpatVector'.

Description

The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.

Usage

adw_sv(ds, extent, gridsize = 5, cdd = 1000, m = 4, nmin = 3, nmax = 10)

Arguments

ds

a input dataframe which contains the column names of lon, lat, value.

extent

a polygon object with class 'SpatVector' (package 'terra'). Assume that the coordinate reference system is WGS1984 (EPSG: 4326).

gridsize

the grid size, i.e. the grid resolution. units: degree.

cdd

correlation decay distance, i.e. the maximum search radius. unit: kilometer. default value: 1000km.

m

is used to adjust the weighting function further, higher values of m increase the rate at which the weight decays with distance. default value 4.

nmin

the minimum number of observation points required to interpolate a grid within the search radius (i.e. cdd); if the number of stations within the search ridius (cdd) is less than nmin, a missing value will be generated to fill this grid. default value 3.

nmax

The number of nearest points within the search radius to use for interpolation. default value 10.

Value

a regular latitude-longitude dataframe grid (interpoled values).

References

Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)
# example
hmap <- cnmap::getMap(code = "410000", returnClass = "sv") # return a 'SpatVector' object.
grd <- adw_sv(dd, extent = hmap, gridsize = 0.5, cdd = 500)
head(grd)

Angular Distance Weighting Interpolation for the extent of vector.

Description

The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.

Usage

adw_vector(ds, extent, gridsize = 5, cdd = 1000, m = 4, nmin = 3, nmax = 10)

Arguments

ds

a input dataframe which contains the column names of lon, lat, value.

extent

a extent numeric vector (latitude and longitude) of length 4 in the order c(xmin, xmax, ymin, ymax).

gridsize

the grid size, i.e. the grid resolution. units: degree.

cdd

correlation decay distance, i.e. the maximum search radius. unit: kilometer. default value: 1000km.

m

is used to adjust the weighting function further, higher values of m increase the rate at which the weight decays with distance. default value 4.

nmin

the minimum number of observation points required to interpolate a grid within the search radius (i.e. cdd); if the number of stations within the search ridius (cdd) is less than nmin, a missing value will be generated to fill this grid. default value 3.

nmax

The number of nearest points within the search radius to use for interpolation. default value 10.

Value

a regular latitude-longitude dataframe grid (interpoled values).

References

Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)
# example
grd <- adw_vector(dd, extent = c(110, 117, 31, 37), gridsize = 0.5, cdd = 500)
head(grd)

Area weighted average.

Description

The large area, or hemispheric, or global averages can be calculated dependent on the area represented by the grid-point or grid-box. The weight of latitude-longitude grid-points-boxes should be the cosine of the latitude of the ith grid-point-box.

Usage

awa(dat, lat)

Arguments

dat

a numeric vector of grid data. The missing values are not allowed.

lat

a latitude numeric vector of grid data. The cosine of latitude is used as the weight coefficient.

Value

a scalar value, i.e the value of area weighted average.

References

Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
grd <- points2grid(dd, extent = c(110, 117, 31, 37), gridsize = 0.5)
grd <- na.omit(grd)
awa(grd$value, grd$lat) # area weighted average

Points were to converted grids using a local gridding method.

Description

the irregularly-spaced data of points are converted onto regular latitude-longitude grids by averaging all stations in grid-boxes.

Usage

points2grid(dd, extent, gridsize = 0.5)

Arguments

dd

a input dataframe which contains the column names of lon, lat, value.

extent

a extent numeric vector (latitude and longitude) of length 4 in the order c(xmin, xmax, ymin, ymax), or a polygon object with class 'sf' (package 'sf'), or a polygon object with class 'SpatVector' (package 'terra'). Assume that the coordinate reference system is WGS1984 (EPSG: 4326).

gridsize

the grid size, i.e. the grid resolution. units: degree.

Value

a regular latitude-longitude dataframe grid (grid values).

References

Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)

# example 1
grd <- points2grid(dd, extent = c(110, 117, 31, 37), gridsize = 0.5)
head(grd)

# example 2
hmap <- cnmap::getMap(code = "410000", return = "sf") |> sf::st_make_valid() # return a 'sf' object.
grd <- points2grid(dd, extent = hmap, gridsize = 0.5)
head(grd)

# example 3
hmap <- cnmap::getMap(code = "410000", return = "sv") # return a 'SpatVector' object.
grd <- points2grid(dd, extent = hmap, gridsize = 0.5)
head(grd)

Points were to converted grids using a local gridding method.

Description

the irregularly-spaced data of points are converted onto regular latitude-longitude grids by averaging all stations in grid-boxes.

Usage

points2grid_sf(dd, extent, gridsize = 5)

Arguments

dd

a input dataframe which contains the column names of lon, lat, value.

extent

a polygon object of simple feature (come from package 'sf'). Assume that the coordinate reference system is WGS1984 (EPSG: 4326).

gridsize

the grid size, i.e. the grid resolution. units: degree.

Value

a regular latitude-longitude dataframe grid (grid values).

References

Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)
# example
hmap <- cnmap::getMap(code = 410000) |> sf::st_make_valid()
grd <- points2grid_sf(dd, extent = hmap, gridsize = 0.5)
head(grd)

Points were to converted grids using a local gridding method.

Description

the irregularly-spaced data of points are converted onto regular latitude-longitude grids by averaging all stations in grid-boxes.

Usage

points2grid_sv(dd, extent, gridsize = 5)

Arguments

dd

a input dataframe which contains the column names of lon, lat, value.

extent

a polygon object of SpatVector (from package 'terra'). Assume that the coordinate reference system is WGS1984 (EPSG: 4326).

gridsize

the grid size, i.e. the grid resolution. units: degree.

Value

a regular latitude-longitude dataframe grid (grid values).

References

Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)
# example
hmap <- cnmap::getMap(code = 410000, returnClass = "sv")
grd <- points2grid_sv(dd, extent = hmap, gridsize = 0.5)
head(grd)

Points were to converted grids using a local gridding method.

Description

The irregularly-spaced data of points are converted onto regular latitude-longitude grids by averaging all stations in grid-boxes.

Usage

points2grid_vector(dd, extent, gridsize = 5)

Arguments

dd

a input dataframe which contains the column names of lon, lat, value.

extent

a extent numeric vector (latitude and longitude) of length 4 in the order c(xmin, xmax, ymin, ymax).

gridsize

the grid size, i.e. the grid resolution. units: degree.

Value

a regular latitude-longitude dataframe grid (grid values).

References

Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.

Examples

set.seed(2)
dd <- data.frame(lon = runif(100, min = 110, max = 117),
                 lat = runif(100, min = 31, max = 37),
                 value = runif(100, min = -10, max = 10))
head(dd)
# example
grd <- points2grid(dd, extent = c(110, 117, 31, 37), gridsize = 0.5)
head(grd)